
Chapter 69
Design Paradigms for Multi-Constellation
Multi-Frequency Software GNSS
Receivers

James T. Curran, Mark Petovello and Gérard Lachapelle

Abstract This study addresses the challenges of designing a tracking architecture
for a multi-constellation, multi-frequency GNSS receiver. Using a C++ software
defined receiver platform, the design of a receiver which operates on the BeiDou,
Galileo, GLONASS and GPS civil signals is explored and a modular, reconfigu-
rable GNSS tracking architecture is presented. The component parts of this
architecture are tested in a pedestrian navigation scenario examining a range of
different code and carrier tracking algorithms. The challenges of developing of a
flexible, universal design is addressed while also highlighting some of the benefits
of signal and application specific designs. In particular, the improvements in both
performance and reliability that can be leveraged by the use of dedicated multi-
signal tracking strategies when operating under certain challenging conditions, is
shown. Results illustrate the various trade-offs that can be made between perfor-
mance and receiver flexibility when applied to a diverse set of GNSS signals.

Keywords BeiDou � DLL � FLL � Galileo � GLONASS � GNSS � GPS � Kalman
Filter � PLL � SDR

69.1 Introduction

Modern GNSS receivers are becoming increasingly complex devices. In the near
future these receivers will have four GNSS constellations at their disposal, each
transmitting on a minimum of two frequencies with at least as many signals and
modulation schemes. Furthermore, depending on the receiver application, be it
survey, outdoor/indoor pedestrian, vehicular, aviation or timing, a receiver may

J. T. Curran (&) � M. Petovello � G. Lachapelle
Location and Navigation Group, University of Calgary,
Calgary, Canada
e-mail: James.T.Curran@ucalgary.ca

J. Sun et al. (eds.), China Satellite Navigation Conference (CSNC) 2013
Proceedings, Lecture Notes in Electrical Engineering 243,
DOI: 10.1007/978-3-642-37398-5_69, � Springer-Verlag Berlin Heidelberg 2013

751

comprise of many different acquisition and tracking strategies, each fulfilling a
different functionality. Key benefits of a software receiver platform are its flexi-
bility and reconfigurability and, so, it is naturally suited to the multi-signal, multi-
application problem. The design of a receiver to suit all needs, however, is not
without its challenges.

As the number of combinations of ranging signals and processing strategies has
become immense, it is perhaps desirable to strive for some signal independence in
the receiver design. Doing so promotes code reuse and results in a receiver which
is more readily adaptable to new signals. Of course, basic receiver operation
requires, at the very least, knowledge of the signal modulation scheme, the nav-
igation message structure and the satellite orbit and, so, a receiver cannot be
completely signal independent. Nonetheless, the majority of the receiver modules
can, through appropriate design, be rendered independent of the particular signal
they process. Key modules amongst these are the acquisition and tracking
strategies.

Tempting as a one-size-fits-all receiver may be, given the diverseness of the
available signals, conventional wisdom holds that there is some merit in tuning
acquisition and tracking strategies and some receiver operations to the specific
strengths and weaknesses of each individual signal structure. Such a receiver
architecture, while rigid and possibly more labour intensive to develop, has
potential to elicit more accurate signal observations and, thus, yield enhanced
navigation performance.

Against the backdrop of an ever-growing set of broadcast ranging signals, this
paper presents an investigation into the merits of these two opposing design
principles via implementation in GSNRxTM, a GNSS software receiver developed
and maintained by the PLAN Group of The University of Calgary. The study
explores challenges of developing a flexible, universal design and identifies and
quantifies the performance benefits that can be gained by sacrificing some flexi-
bility through tailoring strategies to specific signals. A novel receiver architecture
is presented, which facilitates significant code reuse without sacrificing receiver
performance. The design is based on decomposing the receiver processing strat-
egies in such a way as to maximize the commonality of its constituent elements.
With this structure, receiver modification for new signals or different applications
is reduced to simple build-time configuration.

Utilizing a C++ software receiver platform, Sect. 69.2 presents a signal- and
system-independent tracking architecture, capable of hosting an arbitrary collec-
tion correlator-based tracking algorithms. An illustrative example, exhibiting the
basic functionality and design of a specific tracking strategy is presented in
Sect. 69.3. A number of receiver implementations are tested using simulated
signals from the GPS, Galileo, GLONASS and BeiDou constellations, discussed in
Sect. 69.4, revealing the relative performance of different signals using different
architectures. Results of this experiment, discussed in Sect. 69.5, illustrate how
some signals can benefit significantly from customized receiver design.

752 J. T. Curran et al.

69.2 Tracking Architecture

The general hierarchy of the GSNRxTM software receiver is depicted in Fig. 69.1.
The receiver is primarily composed of a list of satellites, a list of sample sources, a
Doppler removal and correlation (DRC) object, and a navigation solution. As can
be seen, each satellite contains one or more channels, each of which operates on
one or more signals. A channel can contain a selection of processing strategies
which may include, for example, cold- and warm-acquisition strategies and a
variety of tracking strategies. Which to use at any given time is at the discretion of
the channel. This paper will focus on the tracking strategies and their imple-
mentation and will consider the design of a flexible, modular multi-signal tracking
architecture. Depicted in Fig. 69.2 is the proposed architecture, which implements
a compartmentalized design, allowing for effective code reuse and flexibility in
algorithm design.

A key feature of this design is the separation of the housekeeping of main-
taining a tracking strategy; the strategy implementation; and the fundamental
tracking operations. Specifically, the design of a practical strategy has been par-
titioned into a three layers, referred to herein as a ‘Tracker’ layer, a ‘Composite
Strategy’ layer and an ‘Strategy-Interface’ layer.

A ‘Tracker’ is a simple tool which dictates the correlator request, directly
observes correlator values and predicts signal parameters. Trackers conform to a
standard interface, depicted in Fig. 69.3, and estimate carrier phase, carrier fre-
quency, code phase and code rate. The interface includes a facility for the tracker
to report its internal estimates of lock or loss-of-lock. Example implementations
include an FLL-DLL pair, a PLL-DLL pair, a code-frequency fine-search or a
Kalman filter, although a tracker could implement any correlator-based tracking

Navigation
Solution

Hard
Drive

Front-End

Doppler
Removal &
Correlation Receiver

Satellites

Channels

Signals

Sample
Sources

Correlator
Values

Correlator
Requests

Observations

Ephemeris Data

Fig. 69.1 A simplified view of the GSNRxTMreceiver architecture

69 Design Paradigms for Multi-Constellation Multi-Frequency 753

algorithm. Compliance with a standard interface allows the strategy to operate
without requiring any knowledge of the particular tracking algorithm. Users can,
therefore, freely design tracking algorithms (trackers) and readily incorporate them
into a fully receiver implementation.

A ‘Composite Strategy’ is defined by a set of trackers and a scheduling state-
machine. Within GSNRxTM, a unique strategy can be defined at the ‘composite
strategy’ layer by, firstly, instantiating a specific set of trackers to be used by the
strategy and, secondly, implementing a state-machine which schedules the use of
each tracker. This schedule may be based on time, signal-strength, bit-
synchronization status or by observing a variety of lock indicators, at the discretion
of the designer. At any given time, only one tracker is declared active by the state-
machine, while all other trackers operate passively. To avoid transients when the
state-machine switches from one tracker to another, signal parameter estimates
within all passive trackers are continuously updated from those of the active one.
When tracking multiple signals, it is likely that a different coherent integration
period will be used on different signals and that the desired tracking loop update
period may be longer than the shortest coherent integration period. To handle this
eventuality, the ‘Composite Strategy’ layer maintains a buffer of accumulator
values for use by the active tracker at each loop update epoch.

The ‘Strategy-Interface’ layer co-ordinates the interface between the tracking
strategy and the receiver. Its tasks include driving the DRC engine to produce
correlator values for all tracked signals; building signal observations; operating a
set of signal monitoring utilities. Notably, these utilities, which include a C=N0

estimator, phase and frequency lock monitors, a secondary-modulation syncher
and a navigation decoder [1, 2], are maintained in this interfacing layer, as they are
utilized by both the state-machine within the ‘Composite Strategy’ layer and are
also (optionally) logged to the hard-drive by the interface layer for post-process-
ing. In general, functionality that is deemed universal to all tracking strategies, is
contained within the strategy interface layer, as it serves as the foundation for all
strategy implementations.

In the implementation of a multi-signal architecture, synchronization is an
important consideration as, if observations of two or more signals are to be
combined, a common epoch should be defined at which to update the tracking
loops. To do so, the concept of a master- and slave-signals is employed. The

Tracker

Code
Phase
Code
Rate
Carrier
Phase
Carrier
Frequency

Correlator
Request

Accumulator
Values

Synchronize
Signal
Power

Noise
Floor

Locked Lost Lock

Fig. 69.2 Block diagram the
standardized ‘Tracker’
interface

754 J. T. Curran et al.

choice of which of the tracked signals is the master signal is at the discretion of the
composite strategy implementation but, typically, it will base the decision on the
signal type and the status of the signal utilities. For example, the strategy may opt
for a pilot-only signal, or one for which its secondary code has been synchronized,
also, preference may be given to a signal which can provide the longer coherent
integration period. Updates of the current active tracker are then aligned with
epochs of the master signal, at which point the buffer of all accumulator values
(corresponding to both master and slave signals) accrued since the last loop update
is passed to the active tracker for processing. An example of this, for the Galileo
E1 BC signals, is depicted in Fig. 69.4.

Another important feature of this tracking architecture is its focus on a multi-
signal support. The design leverages resources such as the vector, list and map
features of the C++ ISO standard library to effect an architecture which operates
on an ensemble of quasi-synchronous1 signals broadcast from a single transmitter.
This multi-signal architecture can then be tailored to manifest any single- or multi-
signal strategy (for example, data-pilot or dual-frequency), by specifying at the
‘Composite Strategy’ layer, the signals on which the active tracker operates. This
approach confers many distinct advantages over architectures which augment,
extend, or dither a single-signal strategy to achieve data-pilot operation, prominent
among which being ease of use and re-usability.

Active
Tracker

Correlator
Request

Correlator
Values

State
Machine

Tracker
List

Signal
Utilities Accumulator

Tracking
Strategy

Strategy
Interface

Receiver

Signal
Observations

 To DRC

Fig. 69.3 A block diagram
of the three-layer architecture
of the composite tracking
strategy illustrating
containment of trackers (Trk
#1–5) within tracking
strategy definition and use of
strategy interface with the
receiver

1 Although signals may have different centre frequencies and symbol (chipping) rates, they are
synchronous in the sense that they experience the same time dilation induced by line-of-sight
dynamics.

69 Design Paradigms for Multi-Constellation Multi-Frequency 755

69.3 Tracking Strategies

The principle of the tracking strategy presented here is that the tracking strategy is
only responsible for activating or de-activating its member tracking algorithms
while each tracking algorithm (tracker) is be self-contained and build-time con-
figurable only. By enforcing this principle, the tracking strategy need not be aware
of any of the internal workings of the tracker, thus promoting simplified code and
re-usability. Rather than re-tune the tracker as the prevailing conditions change,
the strategy can simply select a more appropriately tuned tracker. This approach
preserves the benefits of adaptive tracking algorithms without incurring the
increased complexity.

The design of tracking strategies within GSNRxTM involves two steps: first a
list of available trackers must be populated with suitable tracker instances and,
secondly, a state machine, defining when each tracker is to be used, must be
defined. When populating a list of trackers, a designer may avail of a library of
predefined tracker objects, or opt to design a custom algorithm. For example, the
tracker objects used within this work include a selection of standard tracking
algorithms [1, 3–5]:

• Fine Search: a continuous re-acquisition scheme involving a refined search in
the code and frequency domains.

• pull-in FLL+DLL: a standard FLL and DLL incorporating a false-frequency
lock detection algorithm.

• FLL+DLL: a standard FLL and DLL with configurable loop filters, code-aiding,
and integration periods.

• PLL+DLL: a standard PLL and DLL with configurable loop filters, code-aiding,
and integration periods.

• Kalman Filter: an iterated extended Kalman filter approach.

4 ms 4 ms 4 ms 4 ms 4 ms

4 ms 4 ms 4 ms 4 ms 4 ms

Epoch Epoch Epoch Epoch Epoch

4 ms 4 ms 4 ms 4 ms 4 ms

20 ms

Epoch

Slave

Master

Master

Slave

E1 B

E1 C

E1 B

E1 C

(a)

(b)

Fig. 69.4 Scheduling of tracking loop updates for a multi-signal tracking strategy operating on
the Galileo E1 BC data-pilot pair before (a), and after (b), synchronization with the secondary
code on E1 C

756 J. T. Curran et al.

All implementations, excluding the Kalman filter,2 support both single-signal and
data-pilot operation. A given tracking strategy may contain many instances of the
same tracker but each configured with differently, for example, stipulating various
filter bandwidths or integration periods.

As mentioned previously, within the ‘Composite Strategy’ one tracker is active
at any given time. This active tracker performs signal parameter estimation (code
and carrier tracking) while the remainder are continuously synchronized with it.
The active tracker is chosen by a synchronous, finite Mealy state machine con-
taining a unique state corresponding to each of the available trackers and two
further states, representing the ‘Initialized’ state at which the strategy begins and
the ‘Lost-Lock’ state which indicates to the receiver that a re-acquisition may be
necessary. The input to the state machine are a set of Boolean values given by
conditional operations applied to the signal utilities and the trackers internal
indicators. The inputs include: C=N0, a phase-lock indicator (PLI), a frequency-
lock indicator (FLI), bit and secondary code-synch status, navigation synch status,
tracking time and, tracker internal lock and loss-of-lock indicators.

An example of such a state machine is depicted in Fig. 69.5, representing that
of the GSNRxTM weak-signal tracking strategy. The two fine-search trackers differ
only in cell size, the second having both a smaller search space and smaller cells.
The second of the two FLL+DLL trackers has the narrower filter bandwidths and,
unlike the first, employs carrier aiding of the code loop. The variables fi represent
the various conditions which dictate changes of state and are defined in Table 69.1,
note, however, the subtle difference between the tracker ‘Lost Lock’ status and the
strategy ‘Lost Lock’ state. The flow rational is as follows: the Kalman filter tracker
provides excellent steady-state tracking performance but is unreliable during the
initial transient or pull-in stage. To reach this steady state, and to hand-over to the
Kalman filter tracker, either a series of fine-search trackers, or a series of FLL and
DLL trackers can be used. The fine search trackers are reliable under weak-signal
conditions, but are relatively slow. In contrast, the FLL and DLL trackers are
relatively fast, but are only suitable when the received C=N0 is moderate or high.
This system, therefore defaults to the fine-search trackers and, should it detect a
sufficiently high C=N0, will transition to the FLL and DLL branch of the state-
machine.

Of course, the use of this architecture is not restricted to the above design and
can be utilized to implement any multi-algorithm strategy. For example, one
tracking algorithm (tracker) may be employed to absorb the initial transient, before
a transition to another tracking algorithm more suited to steady state operation.
Likewise, strategies which implement phase tracking with a PLL may first apply
an FLL to the received signal, transitioning to the PLL only when the frequency
uncertainty had reduced sufficiently. Indeed, context-aware strategies, which are
becoming increasingly popular, can be readily implemented within this proposed

2 This is not due to a fundamental incompatibility between the Kalman filter and data-pilot
signals, but rather lack of development time.

69 Design Paradigms for Multi-Constellation Multi-Frequency 757

Table 69.1 Weak-signal
tracking strategy conditional
statements

f0 –
f1 C=N0 \15:0
f2 C=N0 [35:0
f3 Locked
f4 C=N0 \15:0
f5 C=N0 [35:0
f6 Locked
f7 (Lost lock) OR (C=N0 \15:0)
f8 Locked
f9 (Lost lock) OR (C=N0 \15:0)
f10 FLI [0:6
f11 FLI [0:85
f12 C=N0 \15:0
f13 FLI \0:2
f14 C=N0 \15:0

Fine
Search 2

Pull-In
FLL DLL

FLL +
DLL 1

FLL+
DLL 2

Kalman

Fine
Search 1

Initialized

Lost
Lock

0

3

1

2

8

10

514

9

6

11

4

7

12

13

Fig. 69.5 An example of a
state machine for a weak-
signal tracking strategy

758 J. T. Curran et al.

architecture. In all of these cases, the desired strategy can be effected by
populating a list of suitably configured trackers and defining a protocol, via the
state machine, to transition from one to the next.

As discussed in Sect. 69.2, the scheduling of correlator values from the DRC is
handled by the ‘Composite Strategy’ layer. At any given tracking epoch, the buffer
of available correlator values is presented to the active tracker. The tracker itself is
responsible for both dictating the correlator request and processing these resultant
correlator values and, so, the decision to perform a multi-signal algorithm (for
example, a data-pilot, or dual-frequency tracking scheme) is at the discretion of the
current active tracker. This architecture, therefore, not only supports these multi-
signal algorithms, but can provide a blend of single- and multi-signal algorithms,
by appropriately populating ‘Composite Strategy’ with the appropriate trackers.

69.4 Test Scenario

While the previous sections have detailed the design of a flexible tracking strategy
architecture, and the means by which it can be configured, the question of which
tracking algorithms to use, when they should be used, and to which signals they
should be applied, remains. To explore this question, this section presents a simple
pedestrian navigation scenario within which the performance of a selection of
trackers can be examined.

Tracking performance was examined by processing a set of simulated IF data,
representing a pedestrian navigation scenario. The data contained three front-end
channels, the first was configured with a centre frequency of 1569.0 MHz to
receive BeiDou B1I signals [6], the second was configured with a centre frequency
of 1575.0 MHz to receive GPS L1 C/A and Galileo E1bc signals [7, 8], and the
third was configured with a centre frequency of 1602.0 MHz to receive the
GLONASS L1 OF signals [9]. A complex sample rate of 8.0 MHz was used on
each front-end channel. The simulation was designed to provide one satellite from
each of the four systems at the same elevation and azimuth, of 52�and 90�,
respectively, relative to the receiver. Although not necessarily realistic from a
constellation perspective, this ensured that the receiver observed the same line-
of-sight (LOS) dynamics on each signal, facilitating a more fair comparative
analysis, from a signal processing perspective.

In total, eleven minutes of data were generated, during which time the user
traversed a rectangular trajectory measuring 50 m east-west and 100 m north-
south with a cornering radius of 5 m. The received signal strength on all satellites
was set to an initial value of 48 dBHz, at which it was held constant for a period of
one minute and, subsequently, reduced at a rate of 0.05 dB/s reaching a final value
of 18 dBHz at the end of the eleventh minute. A second set of data was collected
as a reference, using the same simulation configuration but without applying
attenuation to the received signal. This data-set served as a reference against which

69 Design Paradigms for Multi-Constellation Multi-Frequency 759

tracking performance was measured. The LOS velocity observed on these received
signals is depicted in Fig. 69.6.

Rather than testing full tracking strategies, the focus of this experiment was to
assess the relative tracking performance and efficiency of some key tracker
objects. In particular, the FLL-DLL, the PLL-DLL and the Kalman filter trackers
were examined. To observe the tracking performance, the receiver was executed
and, following successful acquisition, the strategy was stalled in the tracking state
of interest for the duration of the data-set. For the GPS, GLONASS and BeiDou
signals, a single-signal strategy was employed, while for the Galileo signals a
single-signal strategy was applied to the E1b signal, another single-signal strategy
was applied to E1c and a data-pilot strategy was applied to the E1bc pair. In this
way, the benefits of employing a signal specific custom tracking strategy can be
directly measured. In this case, a the difference between employing a single-signal,
pilot-only or data-pilot strategy on the Galileo E1bc pair is examined.

Table 69.2 details some of the characteristics of the received signals, notable
amongst which are the slope and the coherent integration period. The absolute
slope of the ranging code correlation function (denoted Abs. Slope), evaluated at a
code offset of one half of the corresponding code spacing (denoted E-L Spacing),
is a key contributor to discriminator-based code tracking performance. The
maximum attainable coherent integration period (denoted Coh. Int. Period),

0 50 100 150
−335

−330

−325

−320

−315

−310

−305

Time (s)

L
O

S
ve

lo
ci

ty
 (

m
/s

)

Fig. 69.6 Line of sight
velocity between the satellites
and the receiver fore the first
three minutes of the
simulated dataset

Table 69.2 Signal details

GPS L1 C/
A

GLONASS L1
OF

BeiDou
E1BI

Galileo E1
B

Galileo E1
C

Chip rate (Mcps) 1.023 0.511 2.046 1.023 1.023
Code period (ms) 1 1 1 4 4
Data modulated y y y y n
Coherent integration period

(ms)
20 20 20 4 1

Wavelength (cm) 19.0 18.7 19.1 19.0 19.0
E-L spacing (chip) 0.4 0.4 0.4 0.4 0.4
Absolute slope (m�1) 3.4e-3 1.7e-3 6.8e3 13.2e-3 50e-3

760 J. T. Curran et al.

restricted here by the presence of data modulation, has implications for tracking
accuracy and sensitivity. In all receiver configurations, the coherent integration
period adjusted to 20 ms where possible (but, of course, was limited to 4 ms on the
Galileo E1b signal). For data-modulated signals, Costas-style carrier phase and
frequency discriminators were employed where appropriate and coherent dis-
criminators applied otherwise. Similarly, when the carrier phase was tracked,
where appropriate, an early-minus-late in-phase discriminator was used while an
early-minus-late envelope discriminator was used when only the carrier frequency
was tracked.

The reference data-set was tracked using the weak-signal tracking strategy
described in Sect. 69.3. The test data-set was tracked with each of the tracking
algorithms under examination. In each case a log of the estimated signal param-
eters was recorded, at a rate of 1.0 kHz. Estimates of tracking errors were made by
analyzing the difference between the log corresponding to the reference data and
that of the attenuated data. The results are discussed in Sect. 69.5.

69.5 Tracking Performance

The results of the experiment described in Sect. 69.4 are discussed here. Results
are presented for FLL+DLL, PLL+DLL, and Kalman filter tracking algorithms,
using single-signal implementations for all signals and, also, using a data-pilot
combining algorithm for the Galileo E1bc pair. One important point to consider
here is that the different tracking algorithms have not been tuned to provide
compatible tracking results and, so, a direct comparison between, for example, the
FLL+DLL tracking error and that of the PLL+DLL, is not valid. Rather, these
results are intended to provide insight into the relative performance of different
signals for a given tracking algorithm. For example, a comparison of the frequency
tracking error observed when using either the PLL+DLL or FLL+DLL trackers on
the GPS L1 C/A signal is not meaningful whereas a comparison of the frequency
tracking error observed when using the FLL+DLL tracker on either the GPS L1 C/
A or BeiDou B1I is quite useful.

Figure 69.7a, b and c show the root-mean square (rms) code phase tracking
error versus received signal C=N0 for each of the three tracking algorithms. In both
Fig. 69.7a, b, the code tracking is implemented using a standard DLL algorithm,
the difference being that the former employs an early–minus-late envelope dis-
criminator as it tracks only carrier phase, while the latter can avail of an early-
minus-late in-phase discriminator as the phase is tracked by a PLL. The results
clearly confirm the well known result that the tracking error is inversely propor-
tional to the slope of the ranging code auto correlation function, whereby
GLONASS exhibits the poorest tracking precision and strategies which include the
Galileo E1c signal exhibit the best. Evident also are the effects of integration
period for both the PLL and FLL algorithms, whereby the Galileo E1b signal
looses lock at a higher C=N0 in all cases, due to the 4 ms limit imposed by data-

69 Design Paradigms for Multi-Constellation Multi-Frequency 761

modulation. Interestingly, for the PLL+DLL algorithm, the Galileo E1bc data-pilot
algorithm provides the best performance, owing to the lack of data modulation on
the pilot channel and the sharpness of the ranging code correlation function, while
for the FLL+DLL algorithm, the Galileo E1c algorithm performs best. This is
perhaps the result of the carrier aiding applied to the code loop which, for the data-
pilot combining FLL, as illustrated in Fig. 69.8a, performs more poorly than the
pilot-only implementation.

In contrast to the differences in code tracking performance between the various
signals when using FLL+DLL or PLL+DLL algorithms, Fig. 69.7c suggests that
the Kalman filter can provide a similar level of code tracking accuracy for all
signals, irrespective of the modulation scheme. The only exception being the
tracking of Galileo E1b which, due to a reduced coherent integration period of
4 ms, loses lock at a higher C=N0 than the other signals.

Figure 69.8a and b show the root-mean square (rms) carrier frequency tracking
error versus received signal C=N0 for FLL+DLL and the Kalman filter tracking
algorithms. Examining Fig. 69.8a, it is clear that the signals which can offer a
coherent integration period of 20 ms perform the best, with the 4 ms integration
period of the Galileo E1b signal resulting in significantly poorer tracking

25 30 35 40 45
10−1

100

101

102

103

Average C/N0 (dBHz)

σ τ (
m

)
GPS L1 C/A
BeiDou B1I
GLONASS L1 OF
Galileo E1b
Galileo E1c
Galileo E1bc

20 25 30 35 40 45
10−1

100

101

102

Average C/N0 (dBHz)

σ τ (
m

)

GPS L1 C/A
BeiDou B1I
GLONASS L1 OF
Galileo E1b
Galileo E1c
Galileo E1bc

25 30 35 40 45

10−1

100

101

Average C/N0 (dBHz)

σ τ (
m

)

GPS L1 C/A
BeiDou B1I
GLONASS L1 OF
Galileo E1b
Galileo E1c

(a)

(c)

(b)

Fig. 69.7 Code phase tracking error, in metres, for the FLL+DLL, PLL+DLL and Kalman filter
tracking architectures. a, b The PLL+DLL tracking architecture. c The Kalman filter tracking
architecture

762 J. T. Curran et al.

performance. Surprisingly, the algorithm which combines the Galileo E1bc data-
pilot pair, performs by almost as poorly. This observation betrays a sub-optimal
data-pilot combining, indicating that, perhaps, data-pilot combining is not as
straightforward for carrier frequency tracking as it is for carrier phase or code
phase. Similar to the FLL+DLL algorithm, the carrier frequency tracking perfor-
mance of the Kalman filter, presented in Fig. 69.8b, is similar for all signals which
can support a 20 ms coherent integration period, the Galileo E1b signal, once
again, suffering from the effects of a 250 bps data modulation. Another curious
feature of these results is the relationship between received signal strength and
carrier frequency tracking error. For the Kalman filter algorithm, the rms tracking
error exhibits a linear inversely proportional relationship with the received C=N0.
The FLL, in contrast, incurs a much more rapid degradation in tracking perfor-
mance with reducing C=N0.

Finally, the carrier phase tracking performance of the PLL+DLL and Kalman
filter tracking algorithms is presented in Fig. 69.9a and b. Here the benefits of the

25 30 35 40 45
10−2

10−1

100

Average C/N 0 (dBHz)

σ ω (
m

/s
)

GPS L1 C/A
BeiDou B1I
GLONASS L1 OF
Galileo E1b
Galileo E1c
Galileo E1bc

20 25 30 35 40 45
10−2

10−1

100

Average C/N 0 (dBHz)

σ ω (
m

/s
)

GPS L1 C/A
BeiDou B1I
GLONASS L1 OF
Galileo E1b
Galileo E1c

(a) (b)

Fig. 69.8 Carrier frequency tracking error, in metres per second, for the FLL+DLL and Kalman
filter tracking architectures. a The FLL+DLL tracking architecture. b The Kalman filter tracking
architecture

20 25 30 35 40 45

10−2

10−1

10 0

10 1

Average C/N0 (dBHz)

σ θ (
cy

cl
es

)

GPS L1 C/A
BeiDou B1I
GLONASS L1 OF
Galileo E1b
Galileo E1c
Galileo E1bc

25 30 35 40 45

10−2

10−1

Average C/N0 (dBHz)

σ θ (
cy

cl
es

)

GPS L1 C/A
BeiDou B1I
GLONASS L1 OF
Galileo E1b
Galileo E1c

Fig. 69.9 Carrier phase tracking error, in cycles, for the PLL+DLL and Kalman filter tracking
architectures. a The PLL+DLL tracking architecture. b The Kalman filter tracking architecture

69 Design Paradigms for Multi-Constellation Multi-Frequency 763

pilot signal become pronounced as the Galileo E1c and Galileo E1bc data-pilot
pair significantly outperform the other signals when tracked by a PLL+DLL
algorithm. For the Kalman filter tracking algorithm, the limited coherent inte-
gration period afforded by the Galileo E1b signal, once again results in a reduced
tracking precision, relative to the other signals.

It is worth commenting on the tracking error incurred while tracking the GPS
L1 C/A signal, as shown in Fig. 69.9a. The eleven minute data-set was tracked
from beginning to end and the rms tracking error calculated over successive 30 s
windows. Should the tracking algorithm begin to loose lock early in the data-set,
the accumulated phase error will continue to contribute to the rms error for later
time-points. Examining Fig. 69.9a, it appears that the receiver lost lock on the
carrier phase at approximately five minutes (corresponding to a C=N0 of 34 dBHz)
thus rendering tracking error estimates for later time-points (lower C=N0 values)
invalid.

69.6 Conclusions

A novel GNSS tracking architecture has been presented in this work which address
receiver design challenges which arise when implementing a multi-constellation
receiver. The design features a highly modular design that facilitates fast and
efficient tracking algorithm design and definition by promoting a high degree of
module and code re-use. Moreover, this design lends itself to simple and rapid
adaptation to new signals as the become available. The effectiveness of this
architecture was demonstrated and tested in the context of a pedestrian navigation
scenario using the BeiDou, Galileo, GLONASS and GPS constellations.

While the tracking performance results presented here cannot be interpreted as
a commentary on the relative performance of the various tracking algorithms, they
do serve to indicate the suitability and efficiency of each strategy when applied to
signals from each of the constellations. That is, for a given tracking algorithm, be
it the PLL-DLL, the FLL-DLL, or the Kalman filter, the relative suitability of each
signal to that algorithm can be examined, in particular, the cost-benefit tradeoff of
implementing a data-pilot tracking algorithm can be assessed.

In terms of ranging code tracking, results show that the Kalman filter based
tracking algorithm provides the best overall performance, exhibiting the least
sensitivity to modulation scheme or coherent integrations period. For the DLL-
based tracking algorithms, however, the attainable performance is sensitive to the
absolute slope of the ranging code auto-correlation function.

In contrast, the carrier frequency tracking performance of both the FLL-based
and Kalman filter based tracking algorithms, exhibit a similar trend across the
various signals. The tracking performance is most heavily influenced by the
attainable coherent integration period and the only notable difference being the
relationship to the prevailing C=N0, it being linear for the Kalman filter and not so
for the FLL.

764 J. T. Curran et al.

The carrier phase tracking performance of both the PLL-based algorithms and
the Kalman filter algorithm, also exhibits some interesting features. It is apparent
that the PLL-based algorithm is relatively insensitive to the coherent integration
period afforded by the tracked signal and, at least for moderate to high C=N0

values, achieves comparable tracking performance for all of the signals. In con-
trast, the Kalman filter clearly achieves a poorer precision for the Galileo E1b
signal, which can only support coherent integration period of 4 ms. Collectively,
these observations suggest that, for a given target application, environment and set
of constellations, there are some clear advantages to employing one tracking a
algorithm over another. There does not, therefore, appear to be an individual
algorithm which has a distinctly universal appeal.

References

1. Kaplan ED (ed) (2006) Understanding GPS: principles and applications, vol 1, chap 5,
pp 179–194. Artech House Inc. ISBN 1-58053-894-0

2. VanDierendonck AJ (1996) Global positioning system: theory & applications (Volume One)
(Progress in Astronautics and Aeronautics), chap 8, pp 329–408. AIAA (American Institute of
Aeronautics & Ast, 1996). ISBN 1-56347-106-X

3. Misra P, Enge P (1996) Global positioning system, signals, measurements and performance,
vol 2. Ganga-Jamuna Press. ISBN 0-9709544-1-7

4. Curran J, Lachapelle G, Murphy C (2012) Improving the design of frequency lock loops for
gnss receivers. Aerosp Electron Syst, IEEE Trans 48:850–868

5. Gleb A (1974) Applied optimal estimation. MIT Press, Cambridge, Mass. ISBN 9780262570480
6. BeiDou Navigation Satellite System (2013) Signal in space interface control document. http://

www.beidou.gov.cn/attach/2012/12/27/201212273da29c5eb8274deb8cd2b178228ba2bd.pdf.
(Accessed: 01 Jan 2013)

7. GPS Navstar JPO (2013) Navstar GPS Space Segment / Navigation User Interfaces. http://
www.navcen.uscg.gov/pubs/gps/icd200/default.htm. (Accessed: 01 Jan 2013)

8. Galileo Project Office (2013) Galileo OS SIS ICD http://ec.europa.eu/enterprise/policies/
satnav/galileo/files/galileo_os_sis_icd_revised_3_en.pdf. (Accessed: 01 Jan 2013)

9. GLONASS Navigation Satellite System (2013) Interface Control Document. http://
gauss.gge.unb.ca/GLONASS.ICD.pdf. (Accessed: 01 Jan 2013)

69 Design Paradigms for Multi-Constellation Multi-Frequency 765

http://www.beidou.gov.cn/attach/2012/12/27/201212273da29c5eb8274deb8cd2b178228ba2bd.pdf
http://www.beidou.gov.cn/attach/2012/12/27/201212273da29c5eb8274deb8cd2b178228ba2bd.pdf
http://www.navcen.uscg.gov/pubs/gps/icd200/default.htm
http://www.navcen.uscg.gov/pubs/gps/icd200/default.htm
http://ec.europa.eu/enterprise/policies/satnav/galileo/files/galileo%5C%5Fos%5C%5Fsis%5C%5Ficd%5C%5Frevised%5C%5F3%5C%5Fen.pdf
http://ec.europa.eu/enterprise/policies/satnav/galileo/files/galileo%5C%5Fos%5C%5Fsis%5C%5Ficd%5C%5Frevised%5C%5F3%5C%5Fen.pdf
http://gauss.gge.unb.ca/GLONASS.ICD.pdf
http://gauss.gge.unb.ca/GLONASS.ICD.pdf

	69 Design Paradigms for Multi-Constellation Multi-Frequency Software GNSS Receivers
	Abstract
	69.1…Introduction
	69.2…Tracking Architecture
	69.3…Tracking Strategies
	69.4…Test Scenario
	69.5…Tracking Performance
	69.6…Conclusions
	References

